
1

Science Search and Retrieval using XML

Daniel Crichton, Steven Hughes, Jason Hyon, Sean Kelly
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109

Abstract - Science missions and instruments continue to produce volumes of useful data
and scientists depend on the data systems and tools that archive this data as a means to
access and analyze it. These existing legacy systems do not interoperate well, and
scientists must access each data system and its corresponding science data independently
through tools that have been custom-built for the particular science data system or
mission. The Object Oriented Data Technology (OODT) [3] task is working on the
distributed resource location service, which will allow location and exchange of
geographically distributed data. Advances in Internet and distributed object technologies
provide an excellent framework for sharing data across multiple data systems. The
Extensible Markup Language (XML) and the Common Object Request Broker
Architecture (CORBA) provide support for electronic data interchange (EDI) between
heterogeneous data sources. CORBA provides the over-the-wire exchange of XML-
based profiles that contain descriptive information of science products archived at remote
data systems. This paper discusses a framework for data system interoperability that will
not only benefit space science, but provide a cross-disciplinary solution for a next
generation data system architecture.

I. Introduction

Science data has continued to devolve into a
large set of highly fragmented distributed data
systems. These systems are heterogeneous and
geographically distributed making
interoperability and integration difficult.
Furthermore, correlating science data across a
multi-disciplinary environment is even more
challenging. The Object Oriented Data
Technology task at the Jet Propulsion Laboratory
is currently researching a distributed framework
that will allow for dataset resources and products
to be exchanged based on a set of distributed

systems called the distributed resource location
service.

The distributed resource location service enables
applications to locate geographically distributed
science data in heterogeneous data systems
without knowing which data systems and
catalogs to search, or what the interfaces are to
each catalog. The resource location service
manages a hierarchical conglomerate of dataset
resource definitions that allow for data products
residing in distributed data systems to be located.
The intent of the hierarchical view is that clusters
of data systems may be organized as sub-
components of larger communities. For
example, NASA’s Office of Space Science has

2

hundreds of data systems each containing
numerous datasets and catalogs that make up the
multi-disciplinary communities of planetary,
astrophysics and space physics science data.
Within each community, there can exist smaller
communities that can point to data systems,
products, or even other communities. Once data
is located, the service converts it to a neutral
format to enable correlation across science data
systems.

II. Architecture

The resource location service has several
architecture objectives. These include
(1) requiring that individual data systems be
encapsulated to hide uniqueness; (2) requiring
that communication between distributed services
use metadata for data interchange; (3) defining a
standard data dictionary based on a metadata for
describing data resources; and (4) providing a
solution that is both scalable and extensible.

The resource location service centers around an
architecture based on a directed graph1 (or
digraph) of resources that are traversed in order
to satisfy a query. Profiles—sets of resource
definitions [7]—describe nodes of the digraph.
Profiles may point to other profiles thus
representing arcs of the digraph. A profile is
essentially a metadata description of the
resources known at a node in the distributed
framework. These resources are either data
products archived by an integrated data system,

1 A directed graph consists of a set of vertices V
and a set of arcs E. Vertices are also called
nodes or points; Arcs are also known as directed
edges or directed lines.[1]

or definitions of other profile nodes that manage
metadata about other data systems that can
further satisfy the query. Figure 1 depicts an
example of a digraph of profiles that represents a
set of distributed data systems.

The resource location framework consists of
three components that include a query service
component, a profile service component, and a
product service component. The components
provide the functionality necessary to traverse
the profile digraph and return products for
located resources. The query component
executes concurrent queries to the profile and
product components in order to satisfy a query.
Profile components manage a set of profiles (or
resource definitions) for a particular node in the
digraph. The product component then provides
the translation necessary to map a product
retrieved from a data-system–dependent
environment into a neutral format suitable for
exchange between systems.

Each node of the architecture exchanges data
based on metadata definitions. These definitions
define how data is queried and returned, as well
as how the profiles are encoded at each node.
Product components are similar to profile
components in that they also represent a set of
distributed nodes. A product node wraps the
interface to one or more data systems so as to
sanitize the data and map it into a standard
format that can be exchanged across the
architecture. This allows heterogeneous data
systems to be easily added without changing the
way their data is stored.

The component architecture described lends
itself naturally to a distributed object
implementation. We used the Common Object
Request Broker Architecture (CORBA) to
provide the distributed object framework and to
communicate and exchange data in
heterogeneous environments using the Internet
Inter-ORB Protocol (IIOP) [11]. This activity is
currently using an implementation of the
CORBA 2.0 standard from Object Oriented
Concepts known as Orbacus [12]. Each profile
and product server node is defined by a separate
object name (or node name). CORBA allows for
nodes to be located based on the CORBA
naming service that is included in the Orbacus
implementation. The naming service allows
objects that can satisfy the query to be specified
by name so that profiles can identify other

Figure 1: Distributed profile architecture.

3

profiles or products in their metadata definitions.
This enables integration of the described nodes.

Each component of the architecture
communicates with other components using the
Extensible Markup Language (XML) [14] for the
data content running on top of the CORBA
implementation. One of the critical requirements
of this architecture is to provide interoperability
solutions without having to change the
implementation of each data system. Our
architecture accomplishes this goal by
encapsulating each of the individual data systems
and then using standard metadata definitions
based on XML for interoperability. This allows
various implementations ranging from the use of
relational and object database management
systems to implementations that use flat file and
home-grown databases for cataloging and storing
data products to exchange information using
XML metadata definitions.

We deployed the resource location service
entirely in the Java programming language along
with CORBA and XML [10]. Java allows for
the implementation of the object architecture and
allows the framework to be easily extended to
integrate new data systems. Java is particularly
useful in the design of the product service
component which allows new servers to be
quickly instantiated by loading additional
product translation objects at run time. This will
be explained in further detail below.

One of the goals of this architecture is to provide
a standard application programmers’ interface
(API) that will allow for generic science analysis
tools to be written that can plug into the
architecture to retrieve and correlate data from
multiple data sources. This is accomplished
using an n-tier architecture. Such architectures
split the traditional client-server model into three
layers: a user interface layer, a domain logic
layer, and a storage layer. Abstracting the

implementation away from the client allows for
the infrastructure to evolve without breaking the
tool interfaces. It also moves the domain
intelligence to the middleware components
which removes the constraint that the tools need
to have the knowledge of the protocol and
location of data systems in order to query and
retrieve data from it. Finally, the n-tier
architecture also allows the framework to plug in
additional services.

In Figure 2 the framework shows general objects
that fit into the framework along with bridges to
other services that could be potentially added. In
this case, a navigation service could be added to
allow for images of Jupiter, a constantly moving
target, to be found based on metadata that
describes the right ascension and declination
(RA/DEC) of an image. Also since the
navigation service performs coordinate system
transformation, this addition illustrates how a
software component can use metadata to further
increase interoperability between domains.

Figure 3 illustrates the functioning of one profile
service node within the resource location
framework. The profile server node is managing
resource profiles from multiple disciplines,
namely the Palomar Testbed Interferometer
(PTI), an astrophysics system, and the Planetary
Data System (PDS). A candidate query for an
image from the Mars Global Surveyor mission
arrives at the node from the API. A candidate
PDS resource is then identified by searching the
resource profile database. The query system will
subsequently use a PDS product delivery service
to obtain product information from the resource.
Product information may include images, time
series data, or simply metadata information. The

Figure 2: Component framework

Figure 3: Profile Service Node

4

product delivery service will be described in a
subsequent section of the paper.

The component architecture as described focuses
on providing a framework for solving complex
integration problems across heterogeneous data
systems. It addresses the issues of data location,
data transformation, and data exchange. The
framework provides a scalable architecture that
centers around the use of metadata. It also
allows for data systems to continue to retain their
unique attributes, yet plug into an enterprise
architecture that allows for the successful
exchange of data content through the use of
XML. By using XML this framework is able to
impose an inter-disciplinary communication
mechanism that allows for data to be shared and
exchanged.

III. Query Service

The query component of the framework serves as
the starting point for users to retrieve
information stored across distributed data nodes.
The query component’s CORBA interface
enables analysis tools to have a programmatic
entry point for entering queries and retrieving
results. In addition, we have implemented a Java
API that wraps the CORBA interface (a C++
API is forthcoming). This enables scientists and

engineers to develop their own data analysis
tools to access disparate data systems from a
single API. As more data systems are added to
the framework, existing tools can access the new
systems with no changes. Furthermore, multiple
user interfaces that access the query component
are possible. One such interface that we have
developed is a web interface. The web interface
uses the Java API to give scientists and engineers
immediate access to data systems from any
common web browser without any programming
or knowledge of what data systems to search.

The query service uses the CORBA naming
service to connect to a profile node. In general,
searches will enter the directed graph at the root
or parent node; however, the query service can
enter and search at any point in the graph.
Profiles must be registered in order to be
searched.

To execute a search, the query component
assembles an XML document describing the
characteristics of the query. The document
includes a header section that describes metadata
about the query, such as its title, description, data
dictionary, security type, and revision code.
These elements indicate to the query service any
characteristics, versioning, or special handling
required by the query. Also included in the
document are preferences on the result, such as

Figure 4: UML Diagram for Profile Search

5

how the query should propagate through the
digraph, the maximum number of results, the
query itself, and a space for results. For example,
a query for "TARGET_ID=MARS" results in the
following XML document:

<?xml ver si on=” 1. 0” ?>
<QUERY QUERY_I D=" OODT_XML_QUERY_V0. 1" >
 <QUERY_ATTRI BUTES>
 <I D>OODT_XML_QUERY_V0. 1</ I D>
 <TI TLE>OODT_XML_QUERY - Quer y Exampl e</ TI TLE>
 <DESC>Thi s quer y can be handl ed by
 t he PDS DI S
 </ DESC>
 <TYPE>QUERY</ TYPE>
 <STATUS_I D>ACTI VE</ STATUS_I D>
 <SECURI TY_TYPE>UNKNOWN</ SECURI TY_TYPE>
 <REVI SI ON_NOTE>1999- 12- 12 JSH V1. 0
 </ REVI SI ON_NOTE>
 <DATA_DI CTI ONARY_I D>PDS_DD_V1. 0
 </ DATA_DI CTI ONARY_I D>
 </ QUERY_ATTRI BUTES>
 <RESULT_MODE_I D>ATTRI BUTE</ RESULT_MODE_I D>
 <PROPOGATI ON_TYPE>BROADCAST</ PROPOGATI ON_TYPE>
 <PROPOGATI ON_LEVELS>N/ A</ PROPOGATI ON_LEVELS>
 <MAXI MUM_RESULTS>100</ MAXI MUM_RESULTS>
 <RESULTS>0</ RESULTS>
 <KWQ_STRI NG>TARGET_NAME = MARS</ KWQ_STRI NG>
 <QUERY_SELECT_SET/ >
 <QUERY_FROM_SET/ >
 <QUERY_WHERE_SET>
 <QUERY_ELEMENT>
 <ELEMENT_TYPE>ELEMENT_NAME</ ELEMENT_TYPE>
 <VALUE_I NSTANCE>TARGET_NAME</ VALUE_I NSTANCE>
 </ QUERY_ELEMENT>
 <QUERY_ELEMENT>
 <ELEMENT_TYPE>LI TERAL</ ELEMENT_TYPE>
 <VALUE_I NSTANCE>MARS</ VALUE_I NSTANCE>
 </ QUERY_ELEMENT>
 <QUERY_ELEMENT>
 <ELEMENT_TYPE>RELATI ONAL_OPERATOR
 </ ELEMENT_TYPE>
 <VALUE_I NSTANCE>EQ</ VALUE_I NSTANCE>
 </ QUERY_ELEMENT>
 </ QUERY_WHERE_SET>
 <QUERY_RESULT_SET/ >
</ QUERY>

The query service "crawls" through multiple
nodes in the directed graph of resource systems
automatically, locating additional servers that
can fulfill a request for a particular item in any
number of datasets. The query service uses
"spider" objects to execute queries on each
profile’s XML description. The spider objects
are part of the scatter-gather approach: each
object can run in its own thread of execution,
maximizing the concurrency of multiple nodes in
the system. The system scatters the spiders
across nodes and gathers their results as they
become available.

Figure 4 shows a Unified Modeling Language
(UML) [2] sequence diagram for a typical
search. In the diagram, objects are shown across
the top with their lifelines dropping down as time
increases. Rectangles over the lifelines depict
when an object is active. Solid arrows show
method calls on an object, while dashed arrows
show returns from those calls. A user’s query
triggers the action at the Query Server object
through its “execute search” method. The Query

Server asks its root Profile Server object for any
matches to the query. In response, the Profile
Server returns three possible other Profile
Servers that could contain matches (in addition
to any dataset matches it itself has).
Concurrently, the Query Server executes the
same query on the other Profile Servers. As each
server returns more information, the Query
Server may query yet more and more servers.
Finally, after traversing the digraph in this way,
the Query Server returns the search results in an
XML document.

The Java programming language simplifies
development of concurrent programming such as
that used in the query component. Java includes
built-in keywords and library classes for
threading. However, Sun’s marketing phrase for
Java, “Write Once, Run Anywhere,” is more
hype than reality. In order to encourage
implementations of Java on a wide variety of
computer hardware and operating systems, Sun
underspecified details of Java’s threading
behavior. As a result, behavior of threaded
programs vary from implementation to
implementation. Sometimes, programs hang
(deadlock) even though there is no obvious
deadlock in the code as implemented.

The query service experiences such hanging
behavior. When running in a Windows-based
Java environment, multiple concurrent queries
work correctly and quickly. But on a Linux-
based environment, multiple threads performing
queries hang the query component. Because the
scatter-gather approach to making multiple
concurrent queries is far more efficient than
serially querying remote nodes, we plan on
incorporating a deeper investigation of the code
and of various Java virtual machines for the
Linux platform.

Since the directed graph of resource systems is
not necessarily acyclic, the query component
must take care not to re-query profile nodes it
has already visited, or else it could get caught in
an infinite loop. The query component trivially
prevents this by tracking a set of profiles it has
queried so far.

Once the query component's spiders have
completed their tasks, the query service
assembles the results into an XML document.
The user can access the results document directly
or it can be translated into HTML for
presentation within a web browser. In the web

6

browser, hyperlinks and additional searches are
set up automatically by the translation process
that enables the end user to immediately fetch
products or visit sites that contain the sought
datasets.

One possible extension that we are considering
for the query service is to make it available via
the HTTP standard. This would allow HTML
pages to send XML queries through the resource
location service and render results directly into
the HTML document as previously mentioned.

IV. Profile Service

Science data systems contain product results.
Instruments and experiments generate results that
are archived into heterogeneous data systems.
Unfortunately, there is no standard for querying
these data systems for their content and it makes
locating data nearly impossible. Scientists and
researchers are currently required to visit each
data system independently and use tools that are
unique to the data system in order to locate
information. The profile service that is part of
the framework uses metadata2 to describe a
variety of information about data resources that
can exist within a distributed data environment.
It refocuses the problem of interoperability on
metadata development and enables
interoperability by using a common metadata
interchange language.

The purpose of an OODT profile is to provide a
resource description, or metadata, that is
sufficient to determine if the resource can resolve
a query. It is used by the OODT resource
location service to identify and locate resources
within the digraph and subsequently limit the
number of resources that will have to consider
the query. For example, within a space sciences
implementation of this concept, a query for
images of Jupiter taken by the Hubble Space
Telescope should not have to be handled by the
resource maintaining the Mars Global Surveyor
spacecraft images of Mars. A profile can be
defined a proper subset of the metadata that
describes a resource and as stated about, that is

2 Metadata is, literally, data about data, or
information that describes the characteristics of
data. For example, 37.6 is data. The fact that
it’s a measurement of a body’s temperature in
Kelvins is metadata. [6]

sufficient to determine whether the resource
could resolve a query.

The OODT profile development effort had
several phases. The first phase was to decide
what language should be used to manage the
metadata. Since the underlying requirement was
the need for a common interchange language, we
identified the Extensible Markup Language
(XML) as being ideally suited to the problem.
The advantages of XML include (1) superior
expressiveness to HTML by allowing
information-structure specifications,
(2) simplicity compared to SGML in use and
syntax, and (3) wide acceptance as an Electronic
Data Interchange (EDI) standard. However the
most compelling aspect of XML is that even
though it can be used to capture metadata by
directly mapping data elements to tags, XML can
also be used as a meta-language to define a
language. This allowed us to develop a generic
language for managing metadata from any
domain.

The second phase of the profile development
effort was to develop a generic structure for
capturing metadata for resources from disparate
domains. We used XML to define the XML
Extensible Profile Language (X2PL). X2PL
provides both a means for capturing resource
attributes as well as a language for capturing the
attributes of the information content that the
resource manages. The Document Type
Definition (DTD) specification in Figure 5
illustrates the basic components of the resource
profile. The DTD specification consists of three
sections: the profile attributes, resource
attributes, and the profile elements. We’re using
a DTD specification since the technology is
readily understood and widely supported. We
will consider more powerful specification
mechanisms such as XML-SCHEMA once they
have been approved as a standard by the World
Wide Web Consortium (W3C).

The profile, as an object itself, is described in the
profile attributes section using the attributes
shown. The ID attribute provides a system-wide
unique identifier for the profile instance. The
TITLE and DESC attributes provide descriptions
of the profile, with the TITLE being more terse
and appropriate for frequent display. The TYPE
attribute, defined below, identifies a subtype.
The DATA_DICTIONARY_ID attribute
provides the identifier of a controlling domain
data dictionary and contains additional

7

information that might not be appropriate at the
profile level. The CHILD_ID and PARENT_ID
attributes provide the identifiers of related
profiles and allow for the creation of a hierarchy
of profiles.

The resource description starts in the second
section of the profile, using the attributes shown
in figure 5. The RESOURCE_ID and
RESOURCE_TITLE attributes are analogous to
the profile ID and TITLE, providing
identification and descriptive information. The
RESOURCE_DISCIPLINE attribute identifies
the discipline within which the resource exists
and is taken from a discipline taxonomy. For
example, planetary science is a discipline within
space sciences and itself consists of several
disciplines such as Geosciences, Planetary
Plasma Interactions, and Atmospheres. The
RESOURCE_LOCATION_ID and
RESOURCE_MIME_TYPE attributes provide
the location of the resource and the MIME type
of the resource’s response, respectively. The
RESOURCE_AGGREGATION attribute
indicates the data aggregation level managed by
the resource. These levels are GRANULE or
individual data products, GRANULE+ or data
production collections (data sets), and
GRANULE++ or data set collections. The
RESOURCE_CLASS attribute is used to locate
the resource within a resource taxonomy.
Examples are PRODUCT_SERVER,
PROFILE_SERVER, CATALOG,
INVENTORY, and INTERFACE.

The profile element section is the third part of
the profile and provides the second part of the
resource description by describing the
information content that the resource manages.
For example, within the planetary science
community, the Planetary Data System (PDS),
maintains the Distributed Inventory System
(DIS), an inventory of all science data sets that
have been archived in the system. Within the
inventory, the data sets are indexed on the

associated spacecraft instrument and target body.
The profile element section of a resource profile
for the DIS would include these indexed
attributes as data elements. Figure 6 shows a
portion of the DIS resource profile.

As can be seen from Figure 5, each data element
is defined in the profile structure using meta-
attributes such as ELEMENT_NAME and
VALUE_INSTANCE. The data elements
defined in the profile element section are specific
to the discipline identified in the
RESOURCE_DISCIPLINE and are also defined
in the controlling data dictionary referenced by
DATA_DICTIONARY_ID. To maintain
compliance with international standards, these
meta-attributes are consistent with those defined
in the Data Entity Dictionary Specification
Language (DEDSL) [4], and are briefly
described here. The ELEMENT_NAME
attribute provides a unique identifier for the data
element definition in the data dictionary. The
VALUE_SYNTAX attribute provides the
encoding type for the data element. The
VALUE_INSTANCE, MINIMUM_VALUE,
and MAXIMUM_VALUE attributes provide
either preferred values for enumerated data types
or the upper and lower bounds for numeric data
types. The ELEMENT_MEANING attribute
provides a textual description of the data element
and the ELEMENT_ALIAS attribute identifies
synonyms.

The third phase of the profile development effort
focused on specializing the profile to meet three
slightly different sets of requirements. As is
apparent, the profile element section is
essentially a data dictionary in that it provides
data element definitions. Because of this fact
and the need to reduce complexity, the profile
structure was specialized into three subtypes:
PROFILE, DATA_DICTIONARY, and
INVENTORY.

The PROFILE specialization is consistent with
what has been described above and is used
primarily when one profile is required for one
resource. The specialization specifically makes
the use of the meta-attributes
ELEMENT_MEANING and
ELEMENT_ALIAS optional. For example, in
Figure 6 PDS DIS attributes from the planetary
science domain are defined as data elements in
the profile element section. Using this
information, the query service is able to
determine that a query with a constraint of

Figure 5: OODT DTD

8

“TARGET_NAME = IDA” could be sent to this
resource. Since a common vocabulary is being
used, the assumption is made that the resource
will be able to resolve the query.

The next specialization of the profile structure is
DATA_DICTIONARY. For a
DATA_DICTIONARY, the profile element
section defines the attributes of any object
managed by any resource in the domain,
focusing primarily on those attributes used for
indexing. In addition, the meta-attributes
ELEMENT_ALIAS and
ELEMENT_MEANING are considered more
significant and the preferred values, for any
enumerated types are the union of all preferred
values over the domain. For example, in the data
dictionary for the planetary science community,
the TARGET_NAME data element would have
names of all planets, satellites, comets, and
asteroids for values of VALUE_INSTANCE.

The final specialization of the profile structure is
the INVENTORY. This profile subtype is a
slight variation on PROFILE and is used when
one profile structure is used to describe many
resources. For example, one INVENTORY
could be used to profile all the Mars Global
Surveyor images of Mars. This specialization
minimizes space by requiring only one set of
profile attributes and by reducing the number of
required meta-attributes. For example, there is no
need to provide the ELEMENT_MEANING for
TARGET_NAME for each image.

Additionally, the preferred values of data
elements are also constrained. For example, the
values of TARGET_NAME for any image in
this data set would have a single valid value of
MARS. Figure 7 illustrates a portion of an
INVENTORY profile for one such image.

The final phase of the profile development effort
involves implementing instances of profiles for
specific domains. As is evident, the success of
the distributed resource location concept is
dependent on the existence of domain metadata
captured in repositories such as data (element)
dictionaries. Within such privileged domains, the
registration of resources with the service is
readily accomplished by extracting the necessary
metadata from the domain’s metadata repository,
creating the resource profile, and then registering
the profile with the service. This enables the
successful location of resources within a domain,
possible location of resources across domains,
and even raises the possibility of resource
interoperability.

The PDS resource profiles shown in Figures 6
and 7 were generated by extracting metadata
from the PDS DIS. Metadata from other
disciplines have been selected from relational
catalogs and gleaned from discipline data
models.

The successful location of and supporting
interoperability between resources from different
domains is strongly dependent on metadata
compatibility, or how well the metadata spans
the domains. For example, two related domains
such as planetary science and astrophysics both
associate one or more target bodies with most
data products. However, unless the same
identifiers are used for a specific target or a
mapping between identifiers is determined, the
attribute will not support resource location much
less interoperability across the domains. In fact
as more sophisticated interoperability such as
data transformation and correlation are
requested, deeper levels of metadata
compatibility will be required. For example,
once a target body is identified, sufficient

Figure 7: PDS DIS Profile

Figure 6: Example Profile

9

metadata must be available for coordinate system
conversion.

The resource location service profile is currently
being augmented to handle relationships. For
example, within the planetary science model, a
data set entity is related to a spacecraft
instrument entity through a many-to-many
relationship. To describe a relationship, the
following meta-attributes are being considered
for addition to the profile element section.
RELATION_NAME will provide a domain
unique identifier for the relationship,
RELATION_ELEMENT_NAME will identify
the related data element, and RELATION_TYPE
will provide the relationship classification. This
augmentation will allow additional query
constraints for resource profile selection.

The profile, as a set of resource attributes, lends
itself in an interesting way to the task of
distributed resource location across
heterogeneous domains. When considered from
an object-oriented perspective, a resource has
three modes. These are (1) the description of the
resource as represented by the resource’s
attribute values, (2) the instance of the resource
which is obtained by dereferencing the value of
the resource’s location attribute, and (3) the class
definition as represented by the list of resource
attributes and data elements in the profile
element section.

Within the resource location service, a query can
be made for any of the three modes. For
example, the primary role of a profile is to
provide the location of a candidate resource that
can resolve a user query. Once identified, a
resource attribute,
RESOURCE_LOCATION_ID, is returned. Of
course, any other resource attributes such as
RESOURCE_TITLE can also be returned. As
mentioned, the instance of a resource is obtained
by de-referencing the value of the
RESOURCE_LOCATION_ID attribute. If a
resource profile describes an HTML interface,
the query could return the actual HTML page by
performing a redirection on the value of
RESOURCE_LOCATION_ID. Finally, the class
definition of a resource can be returned and used
to determine how the class of resources could be
queried, even to the extent of dynamically
creating a query interface for display to a user.

When using metadata to enable interoperability
between domains, the hard problem of finding

metadata commonalities across domains arises.
This typically involves identifying similar
attributes, determining core concepts, possibly
generalizing the concept, and determining the
key name and aliases. The resource location
service has started to address this problem
through the use of the data dictionary
specialization and the use of the meta-attribute
ELEMENT_ALIAS.

The OODT task is keeping abreast of research in
the area of metadata development and
management including the development of
thesauri, ontologies, terminology bases, meta-
attribute standards, and tools for metadata
management. In particular the concept of
terminological ontologies [8] is being considered
as a more robust solution for managing metadata
commonalities than the simple determination of
data element aliases. Simply, this approach
focuses on determining the underlying concept
with data element names and other attributes
managed as concept attributes.

V. Product Service

The product service component, like the profile
component, is instantiated as a node in the
distributed architecture and provides the
capability to return data system products based
on a query. This allows each data system to
maintain heterogeneous implementations, but
still integrate into the enterprise architecture.

Each product server node provides the data
access to one or more data systems. A product
server node instantiates a Java-based server that
integrates with the query service and receives
XML-based queries using the XML query
structure explained in Section III as part of the
Query Service. The product server framework
that is provided is a generic Java-based server
that dynamically loads query handlers defined
and registered with the service. Once a query is
received by the framework it then notifies each
registered query handler as a separate thread
managed by the product server. This allows the
product server to time out queries to resources
which may not be available. The product server
then packages the results from each query
handler and returns the results using the XML-
defined query definition. These results are then
passed back to the Query Service which
integrates all the results from the distributed
product servers.

10

Figure 8 demonstrates a query transaction which
returns a list of products that are available from
various product servers.

Query handlers provide a wrapper around each
data system interface. This abstracts the data
system away from the enterprise and allows the
query handlers to function as a translation

Figure 8. Web interface showing a simple search using the resource location service.

11

service. Developers implement query handlers
using Java’s type model, which separates types
from classes using interfaces3. The query
component specifies a standard Java interface to
which query handlers must conform. Developers
creating query handlers define classes that
implement the query handler interface allowing
the product framework to communicate with the
query handlers.

The query handlers are loaded by the product
server and passed the XML query. The query
handlers transform the queries into the system-
dependent query language in order to access the
proprietary interface. This moves the
responsibility for integrating the data-system–
dependent data model onto the data system and
away from the OODT data infrastructure. This is
an important design consideration for
accommodating scalability in a larger enterprise.
An example would be the JPL central PDS node.
Implementation of a query handler for this node
requires that a mapping between the resource
location service XML-based query and the
central node's Sybase RDBMS be implemented.
The query handler would then translate XML-
based queries into a SQL-based query
referencing the schema that was implemented by
the PDS central node. This then provides the
core mapping necessary to allow unique data
system products to be retrieved from their native
environments.

Once products are received by the query handler
they must be transformed into a standard format
that can be exchanged. The XML query
structure defines the result format which allows
for data to be returned in various formats. One
of the requirements of this architecture is to
provide a list of common interchange formats
that imposes a set of standards for
interoperability. The challenge is to provide a
simple set of common formats for images and
text, and require that results that fit into these
categories use these formats for interchange.
This would mean that all images that are in GIF
may need to be converted into JPEG if that was
the chosen format for images. It is important to
point out that results which do not fit into a these
standards can be returned in their native format.

3 An interface in Java is a specification for the
methods of a class. A class that implements a
named interface must provide a definition for
each method specified by interface or else be
marked as an abstract class.

The goal is to provide flexibility in the
architecture, but where possible promote
standards for interoperability.

Product results are returned as ASCII text, or
base-64 encoding depending on the data type.
Base-64 encoding is used to return complex data
products such as images. In many cases data
systems may be able to return URL identifiers to
data as results, rather than returning the complex
data product. This improves performance by
limiting the amount of data transported back to
the client.

The product server design promotes
interoperability by providing an interchange
capability to allow a common query mechanism
to retrieve products from unique data system
implementations. The design presented allows
distributed data system nodes to maintain their
independence by providing a standard product
server that can be extended to access the
distributed data systems. This design provides a
scalable solution by identifying a standard
language for interoperability, and a framework
for extending that interoperability to each data
system. It also scales by pushing the
implementation requirements onto each
individual data system.

VI. Conclusion and Future Work

XML has gained in popularity for improving the
ability for applications to be integrated through
electronic data interchange. The resource
location service presented in this paper uses
XML for data exchange and metadata definitions
as part of its framework for integrating
distributed databases across multiple disciplines.
This solution allows for loosely related data
systems to remain distributed, while providing a
content management and interchange capability
for locating specific data products and resources
archived at remote locations.

The resource location service where possible,
promotes the use of open standards. This
architecture will accommodate changes as XML
and standards for interoperability evolve.
Currently, many organizations are looking at
standards for electronic data interchange and
queries using XML. At time of writing this
paper W3C has just published a draft set of
requirements for an XML query language [15].

12

Metadata really provides the foundation for our
solution. The solution presented, although
applied to planetary, astrophysics, and space
science data problems, is not limited to those
disciplines. In fact, the framework is adaptable
based on the metadata definitions that are
defined. This allows for the solution to then be
applied to other disciplines including healthcare,
defense, business, etc. Currently, we are also
investigating use of this framework for locating
and correlating physiologic and treatment data
from pediatric research hospitals distributed
across the United States. The benefit of the
architecture is that it can easily accommodate
different disciplines by refocusing the problem
on metadata development. This means that
industry and disciplines still must decide on
common interchange language that includes
common terms, data types, and formats. Once
this common language is defined, the resource
location service provides the infrastructure
necessary for allowing heterogeneous data
systems to communicate so that advanced data
discovery and mining techniques can be applied
and new relationships discovered.

VII. References

1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.
Data Structures and Algorithms. Addison-
Wesley 1983.

2. Booch et al. The Unified Modeling Language
User Guide. Addison-Wesley. 1999.

3. Crichton, D.J., Hughes J.S., Hyon J.J., Kelly,
S.C. Object Oriented Data Technology 1999
Annual Report. Interactive Analysis
Environments Program. September 1999.
http://oodt.jpl.nasa.gov/doc/reports/annual/1999

4. Data Entity Dictionary Specification
Language (DEDSL) - Abstract Syntax, CCSDS
647.0-R-2.0, Draft Recommendation for Space
Data System Standards, Consultative Committee
on Space Data Systems, November 1999.

5. Devlin, B. Data Warehouse from Architecture
to Implementation. Addison-Wesley. 1997.

6. Elmasri,R., Navathe,S., Fundamentals of
Database Systems. The Benjamin/Cumings
Publishing Company, Inc. 1994.

7. Hughes,J.S., Crichton,D.J., Hyon,J.J.,
Kelly,S.C., A Multi-Discipline Metadata
Registry for Science Interoperability, Open
Forum on Metadata Registries, ISO/IEC
JTC1/SC32, Data Management and Interchange,
January 2000,
http://www.sdct.itl.nist.gov/~ftp/l8/sc32wg2/200
0/events/openforum/index.htm

8. Hovy, E. Using Ontologies to Enable Access
to Multiple Heterogeneous Databases, Open
Forum on Metadata Registries, ISO/IEC
JTC1/SC32, Data Management and Interchange,
January 2000,
http://www.sdct.itl.nist.gov/~ftp/l8/sc32wg2/200
0/events/openforum/index.htm

9. Deutsch, A., Fernadez, M., Florescu, D., Levy,
A., Suciu, D. XML-QL: A Query Language for
XML. Submitted to W3C August 19, 1998.
http://www.w3.org/TR/NOTE-xml-ql

10. Maruyama, H., Tamura, K., Uramoto, N.
XML and Java: Developing Web Applications.
Addison-Wesley. 1999.

11. Object Management Group. CORBA/IIOP
2.3.1 Specification. October 1999.

12. Orbacus for C++ and Java version 3.1.3.
Object Oriented Concepts, Inc. 1999.
http://ooc.com/

13. W3C. Document Object Model (DOM),
Level 2 Specification.
http://www.w3.org/TR/1999/CR-DOM-Level-2-
19991210.

14. W3C. Extensible Markup Language (XML),
Version 1.0.
http://www.w3.org/TR/1998/REC-xml-
19980210.

15. W3C. XML Query Requirements. W3C
Working Draft. 31 January 2000.
http://www.w3.org/TR/2000/WD-xmlquery-req-
20000131

VIII. About the Authors

Daniel Crichton is a Project Element Manager at
JPL, and the principal investigator for the Object
Oriented Data Technology task where he is
leading a research task developing distributed

13

frameworks for integrating science data
management and archiving systems. He also
currently serves as the implementation manager
and architect of a JPL initiative to build an
enterprise data architecture. His interests are in
distributed architectures, enterprise and Internet
technologies, and database systems. He holds a
B.S. and M.S. in Computer Science. He can be
reached at Daniel.J.Crichton@jpl.nasa.gov

Steven Hughes is a System Engineer at JPL, and
a Co-Investigator for the Object Oriented Data
Technology task. He is currently the technical
lead engineer for the Planetary Data System and
was instrumental in the development of the
planetary science meta-model. His interests are
in distributed architectures and the role of
metadata in interoperability. He holds a B.S. and
M.S. in Computer Science. He can be reached at
Steven.Hughes@jpl.nasa.gov

Jason Hyon has been with JPL since 1985 and is
currently a group supervisor for the Information
Management Technology group. His research
focuses on real time data architecture,
information management, object-oriented
distributed computing, and optical data storage.
He is a principal investigator and a manager for
the Integrated Information Management task for
the JPL TMOD on-board data management
research. He manages the Data Archival and
Retrieval Enhancement (DARE) task for Defense
Threat Reduction Agency, and NASA’s Regional
Planetary Imaging Facility. He is also a co-
investigator for NASA’s Data Distribution Lab
and for the Object Oriented Data Technology
task. He can be reached at
Jason.Hyon@jpl.nasa.gov

Sean Kelly is a Senior Software Engineer at User
Technology Associates and a consultant to JPL.
He is currently supporting implementation for
the Object Oriented Data Technology task. His
interests include practical applications of
software methods and leveraging web
technologies in unique ways. He holds a B.S. in
Computer Science and a B.S. in Technical
Communication. He can be reached at
Sean.Kelly@jpl.nasa.gov

IX. Copyright

The work described was performed at the Jet
Propulsion Laboratory, California Institute of
Technology under contract with the National

Aeronautics and Space Administration.

